Highest vectors of representations (total 12) ; the vectors are over the primal subalgebra. | \(-g_{15}-1/5g_{14}-1/5g_{13}-8/5g_{11}-8/5g_{7}+1/3g_{4}\) | \(g_{19}+5/9g_{10}+5/9g_{9}+8/9g_{6}+8/9g_{1}\) | \(g_{8}\) | \(-g_{25}-g_{22}+5/9g_{16}+5/9g_{12}\) | \(-g_{21}+1/5g_{20}-g_{18}+1/5g_{17}\) | \(g_{23}-8/5g_{20}+8/5g_{17}\) | \(g_{28}+g_{26}\) | \(g_{31}+g_{29}+8/5g_{27}\) | \(g_{34}+1/9g_{30}\) | \(g_{33}+g_{32}\) | \(g_{35}\) | \(g_{36}\) |
weight | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(6\omega_{1}\) | \(6\omega_{1}\) | \(8\omega_{1}\) | \(8\omega_{1}\) | \(10\omega_{1}\) | \(10\omega_{1}\) |
Isotypical components + highest weight | \(\displaystyle V_{2\omega_{1}} \) → (2) | \(\displaystyle V_{4\omega_{1}} \) → (4) | \(\displaystyle V_{6\omega_{1}} \) → (6) | \(\displaystyle V_{8\omega_{1}} \) → (8) | \(\displaystyle V_{10\omega_{1}} \) → (10) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Semisimple subalgebra component.
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) | \(10\omega_{1}\) \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) \(-10\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) | \(10\omega_{1}\) \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) \(-10\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) | \(\displaystyle M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}} \oplus M_{-8\omega_{1}}\) | \(\displaystyle M_{10\omega_{1}}\oplus M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}} \oplus M_{-6\omega_{1}}\oplus M_{-8\omega_{1}}\oplus M_{-10\omega_{1}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle 2M_{2\omega_{1}}\oplus 2M_{0}\oplus 2M_{-2\omega_{1}}\) | \(\displaystyle 3M_{4\omega_{1}}\oplus 3M_{2\omega_{1}}\oplus 3M_{0}\oplus 3M_{-2\omega_{1}}\oplus 3M_{-4\omega_{1}}\) | \(\displaystyle 2M_{6\omega_{1}}\oplus 2M_{4\omega_{1}}\oplus 2M_{2\omega_{1}}\oplus 2M_{0}\oplus 2M_{-2\omega_{1}}\oplus 2M_{-4\omega_{1}}\oplus 2M_{-6\omega_{1}}\) | \(\displaystyle 2M_{8\omega_{1}}\oplus 2M_{6\omega_{1}}\oplus 2M_{4\omega_{1}}\oplus 2M_{2\omega_{1}}\oplus 2M_{0}\oplus 2M_{-2\omega_{1}}\oplus 2M_{-4\omega_{1}} \oplus 2M_{-6\omega_{1}}\oplus 2M_{-8\omega_{1}}\) | \(\displaystyle 2M_{10\omega_{1}}\oplus 2M_{8\omega_{1}}\oplus 2M_{6\omega_{1}}\oplus 2M_{4\omega_{1}}\oplus 2M_{2\omega_{1}}\oplus 2M_{0}\oplus 2M_{-2\omega_{1}} \oplus 2M_{-4\omega_{1}}\oplus 2M_{-6\omega_{1}}\oplus 2M_{-8\omega_{1}}\oplus 2M_{-10\omega_{1}}\) |
2\\ |